- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Basu, Supratim (3)
-
Pereira, Andy (3)
-
Ramegowda, Venkategowda (3)
-
Benitez, Letícia Carvalho (2)
-
Thomas, Julie (2)
-
Baisakh, Niranjan (1)
-
Bolacel Braga, Eugenia Jacira (1)
-
Braga, Eugenia Bolacel (1)
-
Gupta, Chirag (1)
-
Lay, Jackson O. (1)
-
Liyanage, Rohana (1)
-
Moraes de Freitas, Gabriela Peres (1)
-
de Freitas, Gabriela Moraes (1)
-
do Amaral, Marcelo Nogueira (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistancenull (Ed.)Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.more » « less
-
Moraes de Freitas, Gabriela Peres; Basu, Supratim; Ramegowda, Venkategowda; Thomas, Julie; Benitez, Letícia Carvalho; Braga, Eugenia Bolacel; Pereira, Andy (, Plant Signaling & Behavior)
-
de Freitas, Gabriela Moraes; Thomas, Julie; Liyanage, Rohana; Lay, Jackson O.; Basu, Supratim; Ramegowda, Venkategowda; do Amaral, Marcelo Nogueira; Benitez, Letícia Carvalho; Bolacel Braga, Eugenia Jacira; Pereira, Andy; et al (, PLOS ONE)
An official website of the United States government
